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Abstract. The dynamics of the quiet solar atmosphere are
highly nonlinear. Both the standing waves of solar oscillations
and acoustic waves generated in the upper convection zone be-
come nonlinear in the atmosphere and transform into shock
waves. Interactions of shock waves, the formation of contact
discontinuities, and interactions of shocks with these disconti-
nuities will occur. The strong nonlinear dynamics of the atmo-
sphere should influence high orderp-modes of the Sun. In this
series of papers we shall deal with fundamental properties of
the interaction of the interior of a star with its atmosphere. Ac-
cording to the state of numerical techniques, we must restrict
ourselves to radial oscillations or to the vertical dynamics of
the atmosphere, respectively. As the nonlinear dynamics of the
atmosphere governs the problem, we use a simple equilibrium
model of the Sun or a star. For simplicity, we do not take a
radial model but a plane layer model. Our particular “standard
model” is a layer with nearly constant density in the interior
and a smoothly matched isothermal atmosphere. The structure
of this configuration is fitted to the structure of the Sun. In the
present paper we present the equilibrium model and solutions
of its linear adiabatic wave equation. The equilibrium config-
uration has been selected so, that the wave equation can be
transformed to the equation of the associated Legendre func-
tions. We determine the discrete eigenfrequencies, the modes,
and the eigenfunctions of the continuous frequency spectrum.
Resonances of the continuum are discussed. Also a set of dis-
crete complex frequencies exists. The corresponding waves are
not damped modes but limiting cases of instationary waves. The
influence of an isothermal corona with a discontinuous transi-
tion layer on the frequency spectrum is investigated. We find
strong resonances at frequencies between the discrete frequen-
cies of the corona-free model.
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1. Introduction

Observations of velocity fields and brightness fluctuations of
the quiet solar atmosphere yield results which give evidence
of the existence of standing waves in the upper atmosphere of
the Sun. Travelling waves are observed only in the photosphere
and lower chromosphere. In the upper chromosphere, however,
the observational findings indicate non-propagating waves. Re-
views given by Deubner (1998) and Deubner & Steffens (2000)
deal with this problem. However, results of the linear theory
have been used to interprete the observational data.

The theory of linear radial and nonradial adiabatic pulsations
of spherically symmetric stars is well-founded (cf., e.g. Ledoux
& Walraven 1958, Unno et al. 1989). The mathematical theory
of radial pulsations is elegant provided a zero-pressure bound-
ary condition is placed at the surface of the star. In this case,
the pulsation equation forms a Sturm-Liouville type eigenvalue
problem. Also the mathematical theory of nonradial oscillations
with zero-pressure boundary conditions is attractive. Here, for
the study of higher order modes, Cowling’s approximation may
be used. Further, for high orderp-modes, it is sufficient to study
only the outer parts of a star or the Sun by a plane layer ap-
proximation with constant gravity. If, however, an atmosphere is
matched to the convection zone or if the zero pressure boundary
condition is replaced by a radiation condition, so that waves can
propagate outwards, the spectrum becomes continuous above a
certain frequency like the cut-off frequeny of the isothermal at-
mosphere. Further, the atmosphere or the boundary conditions
influence the frequencies and the form of the remaining discrete
modes. References to papers dealing withp-modes of a plane
layer with constant gravity (the outer convection zone with an
overlying atmosphere) are given by Schmitz & Steffens (1999).

The linear dynamics of an atmosphere are also determined
by resonance oscillations excited by pulses or waves. In the case
of an isothermal atmosphere, the frequency of the resonance
oscillation is the acoustic cut-off frequency. The presence of
gravity alone does not cause a resonance oscillation. Schmitz &
Fleck (1995) have shown that the occurence of this oscillation
depends also on the form of the temperature stratification.
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The main problem of the linear theory is the fact that lin-
ear waves in an atmosphere become nonlinear and form shock-
waves. This behaviour concerns running waves in the acoustic
domain of the diagnostic diagram as well as standing waves
with frequencies below the acoustic cut-off frequency. Also
the waves of the tail of a propagating strong pulse can trans-
form into shock-waves (Holweg 1982). Calculations of two-
dimensional finite-amplitude waves performed with an appro-
priate wave code (Schmitz 1986) always result in the formation
of shocks. The linear theory works only in the limit of really
small wave amplitudes. Also finite-amplitude standing waves
in gases without an external gravity quickly form shock-waves
(Bechert 1940).

In theory, in an atmosphere, both long period evanescent
waves and short period acoustic waves generated by turbulent
convection transform into shock waves. Then, contact discon-
tinuities are formed by shock-overtaking, and shocks interact
with these discontinuities. Because of the complexity of these
dynamical processes, numerical calculations of the nonlinear
dynamics of a non-magnetic atmosphere have been restricted
to purely vertical motions (e.g. Schmitz et al. 1985, Schmitz &
Fleck 1993, Fleck & Schmitz 1993, Carlson & Stein 1998). At
present, it is not possible to tackle the problem of a nonlinear
three-dimensional atmospheric wave field with its shock-fronts
and the interactions numerically.

The one-dimensional simulations use isolated atmospheres
with a given boundary condition (moving piston) at the bottom.
This boundary condition determines the dynamics of the atmo-
sphere without any reaction to the motion of the atmosphere. In
practice, downwards propagating waves often conflict with the
fixed motion of the piston.

This series of papers shall deal with mutual interactions
between the linear dynamics of the interior of a star and the
(nonlinear) dynamics of its atmosphere. Given the problems
just mentioned, we shall study only radial motions or radial
pulsations.

From a hydrodynamical point of view, the atmosphere is the
most complicated part of a star. For this reason, we retain the
plane atmosphere. As there are numerical codes for the calcula-
tion of vertically propagating shock waves and profound knowl-
edge of the linear and nonlinear dynamics of a plane atmosphere,
it is obvious to use this atmospheric model. As, in comparision
with the atmosphere, the interior of the star is a linear hydrody-
namical system, we shall describe also the interior by a plane
approximation. Instead of the radial dynamics of a sphere, we
study the vertical dynamics of a plane self-gravitating layer. This
approximation enables a compact and numerically optimal for-
mulation of the (nonlinear) hydrodynamical equations and the
gravitation by use of the column mass as an independent variable
(Schmitz & Wolf 1986). Another point of view supporting the
plane layer approximation is the existence of the analytic model
presented in this paper, which has no corresponding counterpart
in the case of spherical symmetry.

In the one-dimensional case, the vertical dynamics of a
plane layer and the radial dynamics of a sphere should not dif-
fer widely. For linear oscillations, the vertical dynamics of the

layer and the radial dynamics of the sphere are closely related.
This property is due to the Sturm-Liouville eigenvalue prob-
lem. The most significant properties of the solutions are: the
behaviour of the zeros of the eigenfunctions; the orthogonal-
ity of the eigenfunctions; and that the order of the eigenvalues
does not depend upon the detailed internal structure and spatial
symmetry. However, for a nearly unstable star withγ ≈ 4/3 a
plane approximation would fail as the plane layer is stable for
all values ofγ.

In the present paper, we study the linear dynamics of an
analytical model. This model is homogeneous in the interior,
and is smoothly matched to an isothermal atmosphere. With
a zero-pressure boundary condition instead of the atmosphere,
the homogeneous layer corresponds to the homogeneous com-
pressible model of Pekeris (1938). The adiabatic wave equation
of the plane configuration can be reduced to the equation of the
associated Legendre functions. Thereby, all kinds of waves and
oscillations can be described in closed form. The results of the
linear theory are the basis for investigations of the instationary
and nonlinear behaviour of the model.

The paper is organized as follows: In Sect. 2 we present and
discuss the equilibrium configuration and the basic parameters.
Sect. 3 deals with the adiabatic wave equation and its reduction
to the equation of the associated Legendre functions. The gen-
eral solution of the wave equation and some basic properties of
Legendre functions are treated in Sect. 4. Sect. 5 deals with the
discrete modes of the configuration. The continuous spectrum
is considered in Sect. 6. There, we also study the occurence of
resonances. In Sect. 7 we present solutions with complex fre-
quencies and comment upon their meaning. The influence of
the hot isothermal corona on the spectrum is analyzed in Sect. 8.
Some relations for Legendre functions are given in an appendix.

2. The equilibrium model

Let z be the outwards directed geometrical coordinate,p the
pressure,ρ the density,T the temperature, anda the isothermal
sound speed. Letmbe half the column mass of the configuration,
defined bym =

∫ z

0 ρ(z) dz . The equilibrium equation reads

1
ρ

d

dz

(
1
ρ

d p

dz

)
=

d2 p

d m2 = − 4π G . (1)

From this equation we obtain

p(m) = p0 (1 − m2

M2 ) , (2)

whereM =
∫ ∞
0 ρ(z) dz is half the total column mass and

p0 = 2πGM2 . (3)

We now introduce the relative massx = m/M . We have

p(x) = p0 (1 − x2) . (4)

These relations are familiar as plane self-gravitating layers, and
play a role for the physics of the interstellar gas and for the
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Fig. 1. Equilibrium densities and temperatures forε = 0.9 and the
limiting casesε = 0 andε = 1

vertical structure of rotating gaseous disks or disk-galaxies. Now
we choose the following sound speed stratification:

a2(x) = a2
0(1 − ε x2) , with 0 ≤ ε ≤ 1 (5)

wherea0 is the sound speed at the centerz = 0. With the
equation of state of the classical ideal gas,p = a2 ρ, where
a2 = R T/µ, the density reads

ρ(x) =
p0

a2
0

(1 − x2)
(1 − εx2)

. (6)

For the geometrical coordinatez =
∫ m

0
1
ρ dm we obtain

z = z0 [ (1 − ε) Artanhx + ε x ] , (7)

where the effective thickness2 z0 is given by

z0 =
a2
0

2πGM
. (8)

The gravity stratification is

g(m) = 4π G m , (9)

so that the surface gravity isg∞ = 4πGM . From the constant
gravity g∞ and the isothermal sound speeda∞ of the atmo-
sphere we obtain

a2
0 = a2

∞ / (1 − ε) , M =
g∞

4π G
, z0 =

2a2
0

g∞
. (10)

The pressure scale height of the isothermal atmosphere is

H = Ha = a2
∞/g∞ . (11)

Forε = 1, the density becomes constant. Then, the thickness
of the configuration2 z0 is finite. In this case, we havez = z0 x
so thatz = z0 at m = M . For ε = 0 the configuration is
isothermal. Here, we obtain

ρ = ρ0(1 − x2) with x = tanh(
z

z0
) (12)

which is Spitzer’s (1942) solution for the isothermal layer.
To approach the structure of a star with an isothermal atmo-

sphere we have to take1−ε � 1. Fig. 1 displays the temperature
and the density as functions of the geometrical coordinatez for
ε = 0.0, 0.9, and1.0.

In the following, we use data of the Sun: The central tem-
perature isT0 = 1.5 107 K, the surface gravity isg0 = 2.74 104

cm/s2. For the temperature of the atmosphere, we takeT∞ =
4500 K. Then, from the ratio ofT0 andT∞, we obtain:

ε = 0.9997 .

From this value, we getz0 = 7.6 1010 cm, a result in good
agreement with the radiusR = 7 1010 cm of the Sun.

3. The adiabatic wave equation

Let u be the velocity,c the adiabatic sound speed,ρ the density,
p the pressure,γ the constant adiabatic exponent, and∆p the
Lagrangian pressure perturbation. In Lagrangian representation,
the hydrodynamic equations of vertical adiabatic motions read

∂u

∂t
= − ∂ p

∂m
− 4π G m , (13)

∂p

∂t
= − c2 ρ2 ∂ u

∂m
. (14)

By linearization of these equations we obtain

∂u

∂t
= − ∂∆p

∂m
, (15)

∂∆p

∂t
= − c2 ρ2 ∂ u

∂m
, (16)

where nowc(m) andρ(m) are undisturbed quantities. We have
c2 = γ a2. The resulting wave equation of the Lagrangian pres-
sure perturbation is

∂2∆p

∂ t2
= c2 ρ2 ∂2 ∆p

∂m2 . (17)

Using the equilibrium configuration of Sect. 2, we get

(1 − ε x2)
∂2∆p

∂ t2
= γ

p2
0

a2
0

(1 − x2)2
∂2 ∆p

∂m2 . (18)

Now, instead of the massm we use the relative massx, and
separate the time dependence byexp[ i ω t ] to obtain:

−σ2 (1 − ε x2) ∆p = (1 − x2)2
d2 ∆p

d x2 , (19)
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whereσ is a dimensionless frequency defined by

ω2 = σ2 Ω2 with Ω2 =
γ g2

∞
4 a2

0
. (20)

We now denote the time-independent amplitude by∆p, and put

∆p(x) = p∗
√

1 − x2 y(x) . (21)

Here and in the following, the quantityp∗ is an arbitrary pres-
sure. The wave equation can be transformed to the differential
equation of the associated Legendre functions

(1 − x2)2
d2y

dx2 − 2 x(1 − x2)
dy

dx

+
(
ν(ν + 1) (1 − x2) − µ2 )

= 0 , (22)

where the degreeν and the orderµ are given by

ν (ν + 1) = ε σ2 and µ2 = 1 − (1 − ε) σ2 . (23)

We obtain

ν = − 1
2

+
1
2

√
1 + 4 ε σ2 (24)

and

µ =
√

1 − (1 − ε) σ2 . (25)

As P±µ
−ν−1(x) = P±µ

ν (x), we have dropped the minus sign
of the root in the expression ofν. The dimensionless cut-off
frequencyσ∞ of the atmosphere is

σ∞ =
1√

1 − ε
. (26)

4. The general solution of the wave equation

In the following,ν andµ are real or complex numbers. Solu-
tions of the Legendre differential equation are the associated
Legendre functions of the first kind,P+µ

ν (x) andP−µ
ν (x), and

the second kind,Qµ
ν (x). We use the following representation of

the general solution:

y(x) = C1
[
P+µ

ν (x) + C2 P−µ
ν (x)

]
. (27)

From the condition of symmetryy(−x) = y(+x), we obtain

y(x) = A
[
f(ν,+ µ) P+µ

ν (x) − f(ν,−µ) P−µ
ν (x)

]
(28)

where A is a complex constant and

f(ν, µ) = 2−µΓ(
1+ν−µ

2
)Γ(

2+ν−µ

2
) sin(

π[ν−µ]
2

) . (29)

Details are given in the appendix. Further, we have (Gradshteyn
& Ryzhik 1980):

P±µ
ν (−x) = P±µ

ν (x) for ν ± µ = 0, 2, 4, ... (30)

for real or complexν and µ. In the following, we need the
representation (Abramowitz & Stegun 1965)

Pµ
ν (x) =

1
Γ(1−µ)

[1+x

1−x

]µ/2
2F1(−ν, ν+1; 1−µ;

1−x

2
) .(31)

At x = 0 we have (Abramowitz & Stegun1965)

Pµ
ν (0) = 2+µπ−1/2 cos[

π(ν + µ)
2

]
Γ(

1 + ν − µ

2
)

Γ(
2 + ν + µ

2
)

. (32)

From Eq. (31) we obtain

Pµ
ν (x) ∝ (1 − x)− µ/2 for x → +1 . (33)

From Eq. (7) we getz = z0 (1 − ε) Artanhx for z → ∞ or
x → 1. Therefore,1 − x = 2 exp(−z/H) for z → ∞ or
x → 1 whereH = z0 (1 − ε) is the pressure scale height of the
isothermal atmosphere. Finally, we have

Pµ
ν (x) ∝ exp(z µ/2 H) for z → ∞ . (34)

5. The discrete spectrum

Forσ < σ∞, the parametersν andµ are real. Modes are selected
by the boundary condition

y ∝ ∆p√
p

→ 0 as z → ± ∞ or x → ± 1 , (35)

which represents the behaviour of evanescent waves in an
isothermal atmosphere. Now let us assume thatµ > 0. We
have (Erd́elyi 1953):

P+µ
ν (x) ∝ (1 ∓ x)− µ/2 for x → ± 1 (36)

and

P−µ
ν (x) ∝ (1 ∓ x)+ µ/2 for x → ± 1 . (37)

The solution fulfilling the conditiony → 0 for x → ±1 is
P−µ

ν (x). Thus, in Eq. (28) we have to putf(ν, µ) = 0. This
condition is fulfilled by

ν − µ = j = 2n with n = 0, 1, 2, ... . (38)

We finally obtain:

y(x) = P−µ
ν (x) with ν − µ = 2n . (39)

Eq. (30) shows this solution is symmetric with respect tox.
Squaring the condition−µ = j − ν, i.e.

−
√

1 − (1 − ε) σ2 = j − 1
2

√
1 + 4 ε σ2 +

1
2

(40)

we finally obtain the relation

σ4 + σ2 [(2j + 1)2(1 − ε) − 2(1 + j + j2)]

+ (j2 + j + 1)2 − (2j + 1)2 = 0 . (41)

The rootσ2 fulfilling the conditionν − µ = j = 2n is

σ2 =
1
2

[2(j2 + j + 1) − (1 − ε)(2j + 1)2

+ (2j + 1)
√

1 + 3ε + ε(ε − 1)(2j + 1)2 ] . (42)

The second rootσ2 fulfils the conditionν + µ = j.
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Fig. 2.Discrete dimensionless frequencies of a Sun-like configuration.
The dashed lines indicate the cut-off frequenciesσa of the atmosphere
andσc of the isothermal corona considered in Sect. 8.

5.1. The general case0 < ε < 1

Fig. 2 shows the dimensionless discrete frequencies forε = 1
and ε = 0.9997. We haveσ2 = 2 for n = 0 and ε = 1.0,
and σ2 = 1.9997 for n = 0 and ε = 0.9997. Only higher
harmonics are slightly affected by the isothermal atmosphere.
For ε = 0.9997 (0.9998) there are29 (36) modes beneath the
acoustic cut-off frequency. Reports of precise observations of
the radial solar eigenmodes, and accurate measurements of
their frequencies, are abundant in the literature (Lazrek et al.
1997, Toutain et al. 1998, Rabello-Soares & Appourchaux 1999,
Chaplin et al. 1999, Thiery et al. 2000). Modern helioseismic
data indicate that∼ 39 radial resonances are observed up to the
solar acoustic cut-off frequency at≈ 5.5 mHz. Knölker (1983)
who calculated radial pulsation frequencies of a solar model
numerically, found 34 frequencies.

The pressure perturbations of the modes are given by

∆p(x) = p∗
√

1 − x2 P−µ
ν (x) . (43)

Fig. 3 shows the pressure perturbations of the first three modes.
The frequency of the fundamental mode of our simple model
is ω = 7.8 10−4 s−1. The corresponding periodP = 2.2 h is
twice the period of the Sun.

5.2. The special casesε = 1 andε = 0

The caseε = 1 describes a layer with constant density. For
ε = 1, whereµ = 1, we obtain

σ2 = 2 (n + 1) (2n + 1) with n = 0, 1, 2, ... (44)

or

ω2 = 4π G ρ0 γ (n + 1) (2n + 1) with n = 0, 1, 2, ... . (45)

This expression corresponds to

ω2 =4πGρ0
1
3

[γ[n(2n+5)+3]−4 ] with n = 0, 1, 2, ... (46)
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1.0
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(x

) 
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n = 0
n = 1
n = 2

Fig. 3.The pressure perturbations of the three lowest normal modes as
functions of the relative massx

which gives the frequencies of the spherically symmetric, ho-
mogenous model of Pekeris (1938). The pressure perturbations
of the modes of the homogeneous layer are given by

∆p(x) = p∗
√

1 − x2 P 1
2n+1(x) (47)

or

∆p(x) = p∗ (1 − x2)
d

dx
P2n+1(x) . (48)

The caseε = 0 describes Spitzer’s (1942) isothermal layer.
For ε = 0, whereν = 0, we obtain only one real valueσ2 = 1.
With ν = 0 andµ = 0, i. e.P 0

0 (x) = 1, we have:

∆p(x) = p∗
√

1 − x2 . (49)

The frequency of this singular mode is the cut-off frequency
of the isothermal layer. Simon (1965) has studied the linear
adiabatic dynamics of this configuration.

6. The continuous spectrum

For real frequencies above the acoustic cut-off frequency of the
isothermal atmosphere, the spectrum is continuous. The degree
ν is real, the orderµ is imaginary. Let

µ = i α with α =
√

(1 − ε) σ2 − 1 . (50)

We evaluatey(x) as given by Eq. (28). From Eq. (31) we obtain:

P iα
ν (x)=

1
Γ(1−iα)

[1+x

1−x

]iα/2
2F1(−ν, ν+1; 1−iα;

1−x

2
).(51)

As2F1(., .; 1−iα;x) = 2F
∗
1 (., .; 1+iα;x) andΓ(ζ∗) = Γ∗(ζ),

the functionsP iα
+ν(x) and P−iα

ν (x) are complex conjugate.
Then, also the functionsf(ν,+iα) andf(ν,−iα) are complex
conjugate. Therefore, ifA = i B with realB, the general solu-
tion y(x) is real. The result is a standing wave with the pressure
perturbation

∆p(x, t) = p∗
√

1 − x2 y(x) sin(ω t) . (52)
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Now we calculate the ratio of the amplitude in the atmosphere
and the amplitude at the center of the configuration. Inserting
Eq. (32) into the general solution (28), puttingB = 1, and using
addition formulas of the circular functions, we get

y(0) = − π−1/2 sin(πµ) Γ(
1 + ν + µ

2
)Γ(

1 + ν − µ

2
) . (53)

Forµ = i α we obtain

y(0) = − i π−1/2 sinh(πα)
∣∣∣∣Γ(

1 + ν + iα

2
)
∣∣∣∣
2

. (54)

Let us now discuss the behaviour of the solution forz → ∞
or x → 1. From Eq. (51) we obtain

P iα
ν (x) → 1

Γ(1 − iα)

[1 + x

1 − x

]iα/2
for x → 1 . (55)

Thus, in the limitx → 1 we get

y = f(ν, iα) [2 (1−x)]iα − f(ν,−iα) [2 (1−x)]−iα . (56)

Let y1 be the amplitude of this oscillating function. We obtain:
y1 = 2 |f(ν, i α)|, and finallyy1 =√

2 sinh(πα)
α

√
cosh(πα)−cos(πν)

√
ν2+α2|Γ(ν+iα)|.(57)

Lety0 = |y(0)|. The ratio of the amplitude in the atmosphere
and the amplitude at the center is

y1

y0
=

√
2π

√
ν2+α2|Γ(ν+iα)|

2ν
√

α

∣∣∣∣Γ(
1+ν+iα

2
)
∣∣∣∣
2

√
cosh(πα)−cos(πν)

sinh(πα)
. (58)

Fig. 4 shows this ratio forε = 0.9997 andε = 0.99 as a func-
tion of the dimensionless frequencyσ. The dots indicate the

positions of the discrete frequencies of the caseε = 1. At the
discrete frequencies of the configuration with constant density,
resonances occur. Such resonances are familiar from quantum
mechanical systems.

7. Quasi-stationary waves

Now we present solutions with complex frequencies. We con-
sider only the rangez > 0. The pressure perturbation of a out-
going progressive wave in an isothermal atmosphere is given
by

∆p = p∗ exp(− z/2 H + i ω t − i k z) . (59)

In the case of a complex frequencyω, also the wave numberk
is complex. We putω = (i β ± α) Ω andk = (i q ± r) /2H.
An outwards travelling, time damped wave is represented by

∆p = p∗ exp(−z/2H −βΩt+qz/2H ± iαΩt∓ irz/2H)(60)

with α, β, q, r > 0. Written in terms of the relative massx, this
expression reads

∆p = p∗ exp(−z/2H − β Ω t ± i α Ω t) (1 − x)−µ/2 (61)

with µ = q ∓ i r. Because of Eq. (33) we may write

∆p = p∗ exp(−z/2H − βΩt ± iαΩt) Pµ
ν (x) for x → 1 . (62)

Comparison with the general solution (28) shows that
f(ν,−µ) = 0, as opposed to the case of real discrete modes
wheref(ν,+µ) = 0. Then, from Eq. (29) we obtain the condi-
tion

ν + µ = j = 2n with n = 0, 1, 2, ... (63)

Squaring the equationµ = j − ν = 2 n − ν we finally obtain
the dispersion relation (41), from which now

ω2 = α0 ± i β0 with α0 > 0, β0 > 0 (64)

where

α0 =
Ω2

2
[2(j2 + j + 1) − (1 − ε)(2j + 1)2] (65)

and

β0 =
Ω2

2
[ (2j + 1)

√
ε(1 − ε)(2j + 1)2 − 1 − 3ε ] (66)

for ε(1 − ε)(2j + 1)2 − 1 − 3ε > 0. From these two rootsω2

we obtain two rootsω describing time damped waves:

ω = (±α + i β ) Ω with α > 0, β > 0 . (67)

The corresponding values ofµ given by Eq. (23) are

µ = q ∓ i r with q > 0, r > 0 . (68)

Therefore, solutions are

∆p = p∗(1 − x2)1/2 exp( [−β + i α] Ω t ) P q−i r
2 n−q+i r(x) (69)
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Fig. 5. Steepening parameterq (solid dots) and wavelength parameter
r (open dots) of quasi-stationary waves as functions of the ordern. We
haveµ = q ± i r.

and the complex conjugate

∆p = p∗(1 − x2)1/2 exp( [−β − i α] Ω t ) P q+i r
2 n−q−i r(x) .(70)

From these complex solutions, real solutions can be constructed.
The asymptotic form of these real solutions is

∆p = p∗ exp[− z

2H
] exp[

q z

2H
− β Ω t] sin(α Ω t − r z

2H
) (71)

The asymptotic form of the complex displacementξ(z, t) is

ξ ∼ exp[+
z

2H
] exp[

q z

2H
− βΩ t ] exp(±i [αΩ t − rz

2H
]) .(72)

Fig. 5 shows the parametersq andr, Fig. 6 the coefficientsβ
andα.

For plane convection zones with atmospheres, solutions of
the wave equation of three-dimensional waves with complex
frequencies have been calculated by Hindman & Zweibel (1994)
and Schmitz & Steffens (2000).

Solutions of (general) wave equations with complex discrete
frequencies due to suitable boundary conditions are often called
quasi-normal modes. They play a role in wave equations of open
or unbounded systems. Usually, these solutions do not form a
complete set of normal modes.

In our case, adiabatic oscillations with complex frequencies
must be interpreted as follows: Forz → ∞, the solutions behave
as

ξ(z, t) → ξ0 ei ωt ez/(2H) ei k z with ω = ω(k) . (73)

Only for realk, the eigenfunctions of the continuous spectrum
are integrable in a generalized sense. Asρ(z) ∼ ρ0 exp(− z/H)
for z → ∞, we have
∞∫
0

ρ ξk ξ∗
k′ dz ∝ δ(k − k′) . (74)

In the distribution sense, the eigenfunctions are orthogonal. This
does not hold for complex wave numbersk with Re(k) > 0,
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Fig. 6.Time damping coefficientβ (open dots) and frequencyα (heavy
solid dots) of quasi-stationary waves as functions of the ordern. We
haveσ = α+ i β. The small dots indicate the real discrete frequencies
of the atmosphere-free layer.

where the above integral diverges. Such solutions cannot be
normalized. Even if we would restrict ourselves to the interior
of the layer, two conditions for a complete set of proper modes
are not fulfilled: The discontinuity condition, and the no-tail
condition. Problems of proper modes of open systems are dealt
with by Ching et al. (1998).

Adiabatic waves with complex frequencies must be inter-
preted like the corresponding waves in quantum mechanics.
There, complex values of the energy are used to describe non-
stationary states of a system. In the exterior region of a leaky,
one-dimensional potential, the time-damped wave function in-
creases exponentially with respect to the spatial coordinate.
Such a state is called a quasi-stationary state, and it is pointed out
that this non-integrable state approximates an instationary state
which is integrable. The problem is dealt with by Blochinzew
(1957), Macke (1959) and Landau & Lifshitz (1959). Also in
our case, quasi-stationary waves should be considered as ap-
proximations to instationary waves.

8. The influence of a hot, static corona

We study the effect of an isothermal corona on the frequency
spectrum of the configuration. The corona is matched to the
atmosphere by a temperature jump. The temperature of the
corona isTc = 1.5 106 K, its mean molecular weight is
µc = 0.6. The position of the transition layer iszc =
1.00390 z0 = 7.61576 108 m, lying 2000 km above the po-
sition z = 1.00127 z0 = 7.59576 108 m whereT = 5800 K.
Fig. 7 shows this configuration. We denote the pressure scale
heights of the corona and of the atmosphere byHc andHa, the
corresponding cut-off frequencies byωc andωa or σc andσa.
Let

κa =
1

2Ha

√
1 − σ2/σ2

a and ka =
1

2Ha

√
σ2/σ2

a − 1 , (75)

κc =
1

2Hc

√
1 − σ2/σ2

c and kc =
1

2Hc

√
σ2/σ2

c − 1 . (76)
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Fig. 7. Addition of an isothermal corona to a Sun-like configuration.
The relative temperature as a function of the relative height.

Let ∆pa be the Lagrangian pressure perturbation of the atmo-
sphere,∆pc that of the corona. Because of the symmetry, it is
sufficient to consider only the casez > 0. We have

∆pa = e−z/2Ha [Aa sin(kaz)+Ba cos(kaz)] for ω > ωa, (77)

∆pc = e−z/2Hc [Ac sin(kcz)+Bc cos(kcz)] for ω > ωc, (78)

∆pa = e−z/2Ha [Ca e−κaz + Da e+κaz)] for ω < ωa, (79)

∆pc = e−z/2Hc Cc e−κcz for ω < ωc . (80)

The amplitudesAa, Ba, Ca, Da are related to the param-
eters of the solutions (43) and (52). The dimensionless cut-off
frequencies of the corona and the atmosphere areσc = 2.236
andσa = 57.735.

Three cases have to be considered:
a) ω < ωc . In this case, the pressure perturbation of the

corona is given by Eq. (80). As can be seen from Fig. 2, only
the fundamental mode is left. By the existence of the corona the
frequency and the form of this mode are slightly changed.

b) ωa < ω . In this case, the waves are acoustic in the at-
mosphere and in the corona. The pressure perturbation of the
atmosphere is given by Eq. (77), that of the corona by Eq. (78).
The amplitudesAa andBa of the atmospheric parts are fixed,
the amplitudesAc andBc have to be determined by the condi-
tions for continuity. Therefore, the solution in the atmosphere
is not affected by the corona. The resonances shown in Fig. 4
are unchanged.

c) ωc < ω < ωa . In this case, waves are evanescent in
the atmosphere and oscillatory in the corona. The frequency
spectrum is continuous. The pressure perturbation of the atmo-
sphere is given by Eq. (79), that of the corona by Eq. (78). Now
the solution in the atmosphere is affected by the existence of
the corona. We have determined the quantitiesAc, Bc, Ca, and
Da by the conditions for continuity. Finally we have studied
the ratio of the amplitudes in the atmosphere and at the center.
Fig. 8 shows this ratio at the transition layer and atT = 5800
K.

The dots at the abscissa mark the discrete frequencies of the
corona-free model. The resonances are maximum at the inter-
mediate positions. The explanation is simple:

4 6 8 10 12 14
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0.00
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x i
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(0

)|

ε = 0.9997

xi = xc

xi = xa

Fig. 8.Resonances above the cut-off frequency of the corona. Relative
pressure perturbations as functions of the dimensionless frequencyσ
at the positionxa whereT = 5800 K (solid line) and at the positionxc

of the transition layer (dashed-dotted line). Dots at the abscissa mark
the discrete frequencies of the corona-free model.

Without the corona, the behaviour of the eigenfunctions in
the atmosphere is given by

∆pa = Ca exp(−z/2Ha − κaz) for ω = ω2n . (81)

The divergent solutions behave as

∆pa = Da exp(−z/2Ha + κaz) for ω /= ω2n . (82)

When the atmosphere is matched by a corona, these solutions
appear in the atmosphere and dominate the total solution.

9. Conclusions

We have presented a simple, one-dimensional stellar model, and
have solved its linear adiabatic wave equation. The equilibrium
configuration consists of an essentially homogeneous layer with
a smoothly matched isothermal atmosphere. The plane approx-
imation enables application of numerical codes written for the
calculation of the dynamics of plane atmospheres. Its also leads
to an adiabatic wave equation the solutions of which can be
given in closed form.

The plane configuration was fitted to the structure of the
Sun. In this case, the number of discrete pulsation frequen-
cies of the layer roughly equals the number of the frequencies
of radial pulsations of the Sun. We find that the frequencies
of the atmosphere-free homogeneous layer are changed only
marginally by the addition of the atmosphere. Practically, only
a few frequencies immediately below the cut-off frequency are
shifted.

The continuous spectrum above the acoustic cut-off fre-
quency shows resonances. The frequencies of the resonances
nearly coincide with the corresponding frequencies of the
atmosphere-free configuration. However, the resonances are not
strong so that they problably do not play a significant role.

There is an infinite number of discrete complex frequen-
cies with real parts above the acoustic cut-off frequency. The
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time-dependent solutions belonging to these frequencies repre-
sent damped oscillations with outwards travelling atmospheric
waves. Such solutions are common in the theory of open or un-
bounded systems. They are not proper modes as they are not nor-
malizable and do not form a complete set of basis functions. As
in the case of quantum-mechanical systems these solutions are
interpreted as limiting-cases of instationary waves. The physical
meaning of these solutions should form the subject of further
investigations.

We have matched an isothermal plane corona to the atmo-
sphere by a discontinuos transition layer. In this case, the range
ωc < ω < ωa, whereωc andωa are the cut-off frequencies of the
corona and the atmosphere, is important. The discrete spectrum
of the corona-free configuration becomes continuous, and only
the discrete frequency of the fundamental mode remains. There
are resonances with maxima between the discrete frequencies
of the corona-free case. As these resonances are pronounced,
they could play a significant role.

Appendix A: Relations for Legendre functions

First, we give relations concerning the symmetry of the pres-
sure perturbation with respect to the mid-plane. As, in general,
P+µ

ν (x) is not symmetric with respect tox, also the general
solution

y(x) = C1
[
P+µ

ν (x) + C2 P−µ
ν (x)

]
. (A.1)

is not symmetric. To construct a symmetric solution, we use
the condition dy

dx = 0 at x = 0. We have (Gradshteyn &
Ryzhik 1980, Abramowitz & Stegun 1965):

d

dx
P+µ

ν (0) = 2µ 2√
π

sin[
π

2
(ν + µ)]

Γ(
2 + ν + µ

2
)

Γ(
1 + ν − µ

2
)

. (A.2)

Therefore, the condition for symmetry ofy(x) is

2µ sin[
π

2
(ν + µ)]

Γ(
2 + ν + µ

2
)

Γ(
1 + ν − µ

2
)

+ C2 2−µ sin[
π

2
(ν − µ)]

Γ(
2 + ν − µ

2
)

Γ(
1 + ν + µ

2
)

= 0 . (A.3)

We get:

C2 = − 2µ sin[π
2 (ν + µ)] Γ(2+ν+µ

2 ) Γ(1+ν+µ
2 )

2−µ sin[π
2 (ν − µ)] Γ(2+ν−µ

2 ) Γ( 1+ν−µ
2 )

. (A.4)

Multiplying Eq. (A.1) by the denominator ofC2, we obtain
Eq. (28). Eq. (30) follows from

P±µ
ν (−x) = cos([ν ± µ]π) P±µ

ν (x)

− 2
π

sin([ν ± µ]π])Q±µ
ν (x) (A.5)

(Gradshteyn & Ryzhik 1980) for real or complexν andµ.
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